A Neighborhood Condition for Graphs to Have [ a , b ]-Factors III

نویسندگان

  • Mikio Kano
  • Haruhide Matsuda
چکیده

Let a, b, k, and m be positive integers such that 1 ≤ a < b and 2 ≤ k ≤ (b + 1− m)/a. Let G = (V (G), E(G)) be a graph of order |G|. Suppose that |G| > (a + b)(k(a + b − 1) − 1)/b and |NG(x1) ∪ NG(x2) ∪ · · · ∪ NG(xk)| ≥ a|G|/(a+ b) for every independent set {x1, x2, . . . , xk} ⊆ V (G). Then for any subgraph H of G with m edges and δ(G−E(H)) ≥ a, G has an [a, b]-factor F such that E(H) ∩ E(F ) = ∅. This result is best possible in some sense and it is an extension of the result of H. Matsuda (Discrete Mathematics 224 (2000) 289–292).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MORE GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES

The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Several classes of graphs are known that satisfy the condition E(G) > n , where n is the number of vertices. We now show that the same property holds for (i) biregular graphs of degree a b , with q quadrangles, if q<= abn/4 and 5<=a < b = 0 (iii) triregular graphs of degree 1, a, b that are quadran...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

On common neighborhood graphs II

Let G be a simple graph with vertex set V (G). The common neighborhood graph or congraph of G, denoted by con(G), is a graph with vertex set V (G), in which two vertices are adjacent if and only if they have at least one common neighbor in G. We compute the congraphs of some composite graphs. Using these results, the congraphs of several special graphs are determined.

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 224  شماره 

صفحات  -

تاریخ انتشار 2000